Table 1. Fractional atomic coordinates and equivalentisotropicthermalparameterswithe.s.d.'sinparentheses

$\boldsymbol{B}_{eq} = \frac{4}{3} \sum_{i} \sum_{j} \beta_{ij} \boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}.$				
	x	у	z	$B_{eq}(\dot{A}^2)$
O(1)	0-1754 (5)	0.5609 (2)	0.8159 (2)	5.2(1)
C(2)	0.0146 (8)	0.6478 (3)	0.8387 (3)	4.8(1)
C(3)	-0.1832 (8)	0.6541 (3)	0.7772 (3)	4.5 (1)
C(4)	-0.1531 (7)	0.5661 (3)	0.7088 (2)	3.7(1)
C(5)	0.0639 (7)	0.5116 (3)	0.7342 (3)	3.8(1)
C(6)	0.1028 (7)	0.4219 (3)	0.6705 (3)	4.1(1)
C(7)	-0.1012 (6)	0.4247 (3)	0.6050(2)	3.5(1)
N(8)	-0.2545 (6)	0.5121 (2)	0.6285 (2)	3.8(1)
C(9)	-0.1715 (7)	0.3512 (2)	0.5230(2)	3.4 (1)
O(10)	-0.3633 (5)	0.3609 (2)	0.4740 (2)	4.8(1)
O(11)	-0.0073 (4)	0.2695 (2)	0.5092 (2)	4.0(1)
C(12)	-0.0700 (8)	0.1891 (3)	0.4306 (3)	4.6(1)
C(13)	0.1565 (10)	0.1202 (5)	0.4143 (4)	5-8 (1)

 Table 2. Interatomic distances (Å) and angles (°) with
 e.s.d.'s in parentheses

O(1)-C(2)	1.390 (5)	N(8)–C(4)	1.362 (4)
O(1) - C(5)	1.373 (5)	N(8)-C(7)	1.372 (4)
C(3) - C(2)	1.331 (6)	C(9)-C(7)	1 • 455 (4)
C(3)-C(4)	1.412 (5)	C(9)-O(10)	1.213 (4)
C(5)-C(4)	1.369 (5)	C(9)O(11)	1.332 (4)
C(5)-C(6)	1.394 (5)	C(12)O(11)	1 • 465 (5)
C(6)–C(7)	1-388 (5)	C(12)–C(13)	1 · 488 (7)
C(2)-O(1)-C(5)	103.8 (3)	C(6)C(7)N(8)	109.7 (3)
O(1)-C(2)-C(3)	113-1 (3)	C(6) - C(7) - C(9)	130-8 (3)
C(2)-C(3)-C(4)	105-2 (3)	N(8)-C(7)-C(9)	119.5 (3)
C(3)-C(4)-C(5)	107.6 (3)	C(4)-N(8)-C(7)	108.5 (3)
C(3)-C(4)-N(8)	145-4 (4)	C(7)–C(9)–O(10)	123.7 (3)
C(5)-C(4)-N(8)	107.0 (3)	C(7)-C(9)-O(11)	113.0 (3)
O(1)-C(5)-C(4)	110-2 (3)	O(10)-C(9)-O(11)	123.2 (3)
O(1)-C(5)-C(6)	139-2 (3)	C(9) - O(11) - C(12)	116-3 (3)
C(4) - C(5) - C(6)	110.6 (3)	O(11)-C(12)-C(13) 107.4 (4)
C(5)-C(6)-C(7)	104.3 (3)		

Related literature. Synthesis and chemical behaviour published by Hemetsberger & Knittel (1972) and Krutošíková, Dandárová, Alföldi & Kováč (1987). Intermolecular hydrogen bonds in related crystal structures are discussed by Ringertz (1971) and Harrison, Rettig & Trotter (1972).

References

- EGERT, E. (1985). PATSEE Fragment Search by Integrated Patterson and Direct Methods. Univ. of Göttingen, Federal Republic of Germany.
- HARRISON, W., RETTIG, S. & TROTTER, J. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 1036-1040.
- HEMETSBERGER, H. & KNITTEL, D. (1972). Monatsh. Chem. 103, 194.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 55, 99, 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KRUTOŠÍKOVÁ, A., DANDÁROVÁ, M., ALFÖLDI, J. & KOVÁČ, J. (1987). Collect. Czech. Chem. Commun. In the press.

PAVELČÍK, F. (1987). Computer program for Syntex P21 data Reduction. Dept. of Analytical Chemistry, Faculty of Pharmacy, J. A. Komensky Univ., 832 32 Bratislava, Czechoslovakia.

- RINGERTZ, H. (1971). Acta Cryst. B27, 285-291.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELXS86. Program for the solution of crystal structures from diffraction data. Univ. of Göttingen, Federal Republic of Germany.
- SIVÝ, P., SIVÝ, J. & KOREŇ, B. (1987). UB. Automatic Procedure for Unambiguous Choice of Lattice Parameters and Bravais Translation Lattice. Dept. of Physics, Faculty of Chemical Technology, Slovak Technical Univ., Radlinského 9, 812 37 Bratislava, Czechoslovakia.

Acta Cryst. (1988). C44, 2033-2035

Structure of Diazapolycyclic Compounds. XI. 2,3-Epoxy-*trans*-1,2-dimethyl-1,2,3,4tetrahydrobenzo[g]pyridazino[1,2-b]phthalazine-6,13-dione

By C. Foces-Foces and F. H. Cano

UEI de Cristalografía, Instituto del Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain

(Received 21 December 1987; accepted 1 July 1988)

Abstract. $C_{18}H_{16}N_2O_3$, $M_r = 308.34$, orthorhombic, $Pna2_1$, a = 16.4036 (7), b = 11.3924 (4), c = 7.9058 (2) Å, V = 1477.4 (1) Å³, Z = 4, $D_x = 1.386$ Mg m⁻³, graphite-monochromated Cu Ka radiation, $\lambda = 1.5418$ Å, $\mu = 0.741$ mm⁻¹, F(000) = 648, T = 293 K, R = 0.033 for 1189 observed reflexions $[I > 3\sigma(I)]$. The methyl groups are *trans* to each other. The pyridazine ring displays a distorted envelope conformation with the flap at N5 giving rise to some loss of the sp^2 hybridization at N5 and N14 [angles around adding up to 353.6(3) and $353.2(3)^\circ$]. The molecules pack in zigzag chains along the *a* and *b* axes, held together by van der Waals interactions only.

Experimental. Yellow prismatic sample, $0.52 \times 0.51 \times 0.83$ mm, used for data collection and determination of lattice constants (Cu Ka, 89 reflexions up to $\theta = 45^{\circ}$). Philips PW 1100 diffractometer, Cu Ka, graphite

0108-2701/88/112033-03\$03.00

© 1988 International Union of Crystallography

(4) (4) (3) (3) (3)

......

$U_{eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^{T} a_j^{T} \mathbf{a}_i \cdot \mathbf{a}_j \cos(a_i, a_j).$				
	x	у	z	$U_{\rm eq}({\rm \AA}^2 imes 10^4)$
Cl	0.3346 (2)	0.0030 (2)	-0.4015	432 (8)
C2	0.2841 (2)	-0.1074 (2)	-0.3845 (5)	439 (8)
C3	0.2862 (2)	-0.1741 (3)	-0.2277 (5)	524 (9)
C4	0.3374 (2)	-0.1344 (2)	-0.0827(5)	545 (10)
N5	0.3578 (1)	-0.0096 (2)	-0.0962 (4)	460 (7)
C6	0.3768 (2)	0.0494 (3)	0.0489 (5)	500 (9)
C6a	0.4340 (2)	0.1480 (2)	0.0343 (5)	442 (8)
C7	0.4516 (2)	0.2144(2)	0.1745 (5)	500 (9)
C7a	0.5090 (2)	0.3067 (2)	0.1646 (5)	495 (9)
C8	0.5277 (2)	0.3781 (3)	0.3072 (6)	624 (11)
C9	0.5825 (2)	0.4672 (3)	0.2938 (6)	680 (12)
C10	0.6214 (2)	0.4900 (3)	0.1389 (6)	698 (13)
C11	0.6054 (2)	0.4236 (3)	-0.0010(6)	621 (11)
Clla	0.5484 (2)	0.3299 (2)	0.0082 (5)	493 (9)
C12	0.5297 (2)	0.2595 (3)	-0.1334 (5)	502 (9)
Cl2a	0.4736 (2)	0.1703 (2)	-0.1223(5)	451 (8)
C13	0.4486 (2)	0.1057 (2)	-0.2746 (5)	473 (8)
N14	0.3909 (1)	0.0204 (2)	-0.2567 (4)	435 (7)
015	0.3491 (2)	0.0161 (2)	0.1851 (4)	702 (9)
016	0.4737 (2)	0.1320 (2)	-0.1465 (4)	633 (7)
C17	0.2808 (2)	0.1103 (3)	-0.4250 (6)	630 (11)
C18	0.2610 (2)	-0.1653 (3)	-0.5487 (5)	557 (10)
O19	0.2175 (1)	-0.1002(2)	-0.2640 (4)	589 (7)

Table 2. Selected geometrical parameters (Å,°)

C1-C2	1.512 (4)	C1-N14	1.485 (4)
C1-C17	1.519 (4)	C2-C3	1.454 (5)
C2-C18	1.505 (5)	C2-019	1.451 (4)
C3-C4	1.492 (5)	C3-019	1.435 (4)
C4-N5	1.465 (4)	N5-C6	1.366 (5)
N5-N14	1.421 (4)	C6–C6a	1.468 (4)
C6015	1.229 (5)	C6a–C12a	1.421 (5)
C7a–C11a	1.420 (5)	C12a-C13	1.469 (5)
C13-N14	1.365 (4)	C13-016	1.232 (5)
N14-C1-C17	110.4 (2)	C2-C1-C17	111.2 (2
C2-C1-N14	112.5 (2)	C1-C2-019	115.1 (2
C1-C2-O18	115-2 (2)	C1-C2-C3	119.9 (2
C18-C2-O19	113.7 (3)	C3-C2-O19	59·2 (2
C3-C2-O18	120.8 (3)	C2-C3-O19	60.3 (2
C2C3C4	120.7 (3)	C4-C3-O19	114.7 (3
C3-C4-N5	111.5 (3)	C2	60·5 (2
C4-N5-N14	112.7 (2)	C4-N5-C6	117.9 (3
C6-N5-N14	123.0 (2)	N5-C6-O15	120.0 (3
N5-C6-C6a	117.1 (3)	C6a-C6-O15	122-8 (3
C6-C6a-C12a	119-8 (3)	C6a-C12a-C13	119.9 (3
C12a-C13-O16	122.1 (3)	C12a-C13-N14	117.7 (3
N14-C13-O16	120.0 (3)	N5-N14-C13	121.9 (3
C1-N14-C13	116.5 (3)	C1-N14-N5	114.8 (2
C2-C1-N14-N5.	-39.3 (3)	N14-C1-C2-C3	8.1
C1-C2-C3-C4	0.3 (5)	C2-C3-C4-N5	20.2
C3-C4-N5-N14	-51.0 (4)	C4-N5-N14-C1	63.3
CI/-CI-NI4-N5	85.6 (3)	N14-C1-C2-O19	75.6
1114-01-02-018	-149.2 (3)	CI/-CI-CZ-CI8	86.4

monochromator, bisecting geometry, $\omega/2\theta$ -scan mode, 1236 independent reflexions up to $\theta = 65^{\circ}$ in the *hkl* range 0,14; 0,20; 0,10, 1189 considered observed with $I > 3\sigma(I)$. Two standard reflexions were measured every 90 min, no decay observed. The structure was solved by means of the *ORIENT* program (*DIRDIF* system, Beurskens *et al.*, 1984) using a three-ringsystem model taken from an analogous compound [(I) in Apreda, Foces-Foces, Cano & García-Blanco (1982)]. H atoms, from difference synthesis, included isotropically in last cycles of refinement. Empirical weights so as to give no trends in $\langle w\Delta F^2 \rangle$ versus $\langle |F_{\sigma}| \rangle$ and $\langle (\sin\theta)/\lambda \rangle$. R(F) = 0.033, wR = 0.037, S = 1.06. Max. and average $\Delta/\sigma = 0.90$ and 0.06. Final $\Delta\rho$ = +/- 0.15 e Å⁻³. No correction for extinction or absorption. Computing with XRAY76 (Stewart, Machin, Dickinson, Ammon, Heck & Flack, 1976). Scattering factors from International Tables for X-ray Crystallography (1974). Final atomic coordinates for the non-H atoms and the main geometrical parameters are given in Tables 1 and 2,* according to the numbering scheme given in Fig. 1 (Allen *et al.*, 1979). Crystal packing is shown in Fig. 2.

Related literature. The conformation of the pyridazine ring (Fig. 2) is analogous to that in 2,3-epoxy*trans*-1,3-dimethyl-4a,9a-diaza-1,2,3,4,4a,9,9a,10-octahydroanthracene-9,10-dione (Foces-Foces, Cano & García-Blanco, 1978). The configurational angles of the methyl substitutents, with different signs, describe their

Fig. 1. A view of the molecule showing the atomic numbering.

Fig. 2. A view along the c axis of the packing of the title compound showing the zigzag disposition of the molecules.

trans disposition (Foces-Foces, Cano & Garcia-Blanco, 1980).

We thank Dr F. Contreras for suggesting the problem and providing the material.

References

- ALLEN, F. H., BELLARD, S., BRICE, M. D., CARTWRIGHT, B. A., DOUBLEDAY, A., HIGGS, H., HUMMELINK, T., HUMMELINK-PETERS, B. G., KENNARD, O., MOTHERWELL, W. D. S., RODGERS, J. R. & WATSON, D. G. (1979). Acta Cryst. B35, 2331–2339.
- Apreda, C., Foces-Foces, C., Cano, F. H. & Garcia-Blanco, S. (1982). *Acta Cryst.* B38, 2834–2838.

- BEURSKENS, P. T., BOSMAN, W. P., DOESBURG, H. M., GOULD, R. O., VAN DEN HARK, TH. E. M., PRICK, P. A. J., NOORDIK, J. H., BEURSKENS, G., PARTHASARATHI, V., BRUINS SLOT, H. J., HALTIWANGER, R. C. & SMITS, J. M. M. (1984). DIRDIF. Tech. Rep. 1984/1. Crystallography Laboratory, Toernooiveld, Nijmegen, The Netherlands.
- Foces-Foces, C., CANO, F. H. & GARCÍA-BLANCO, S. (1978). Acta Cryst. B34, 991-993.
- FOCES-FOCES, C., CANO, F. H. & GARCIA-BLANCO, S. (1980). Acta Cryst. B36, 377-384.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.

Acta Cryst. (1988). C44, 2035-2037

Structure of Ethyl 2-Amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate at 163 K

By S. B. LARSON* AND S. H. SIMONSEN

Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA

(Received 2 April 1987; accepted 27 June 1988)

Abstract. $C_{11}H_{15}NO_2S$, $M_r = 225 \cdot 31$, monoclinic, a = 8.2996 (13), b = 9.5307 (12), $P2_1/c$, c = $\beta = 105 \cdot 818 \ (13)^{\circ},$ V =14.6009 (20) Å, $1111 \cdot 2(3) \text{ Å}^3$, Z = 4, $D_r(163 \text{ K}) = 1 \cdot 347$, $D_m(295 \text{ K})$ $\lambda(Mo K\alpha) = 0.71069 \text{ Å},$ $= 1.310(1) \text{g cm}^{-3}$ $\mu =$ 2.68 cm^{-1} , F(000) = 480, R = 0.0407 for 2527 reflections $[F_o \ge 4\sigma(F_o)]$. The thiophene ring is planar [max. deviation: C(9), 0.007 (2) Å] as is the carboxyl group, C(3),C(10),O(1),O(2)[max. deviation: C(10), 0.001(2) Å]; the twist between these planes is only $0.96(7)^{\circ}$. Planarity of the N,C(2),C(3),C(10),O(1),-O(2), C(11) fragment is favored because of the intramolecular hydrogen bond $[O(1) \cdots H(N)B, 2 \cdot 08 (3) \text{ Å}];$ and conjugation which is evident in the short single bonds [C(2)-N and C(3)-C(10)] and long double bonds [C(2)-C(3)] and C(10)-O(1) in this fragment. The N is slightly pyramidal [max. deviation: N, -0.105 (2) Å]. The intermolecular hydrogen bonding $[O(1)\cdots H(N)A (1-x, \frac{1}{2}+y, \frac{1}{2}-z), 2.01(2) Å]$ connects the molecules along the b axis. All other intermolecular contacts are not less than the sum of the respective van der Waals radii.

Experimental. Large colorless, transparent prismatic crystals of (1) were obtained by sublimation from a

sample purchased from Aldrich Chemical Co. Density was measured by flotation in aqueous $ZnCl_2$. Table 1 is a summary of data collection and structural refinement.

The structure was solved by MULTAN78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978), and refined by full-matrix least squares (*SHELX76*, Sheldrick, 1976). Scattering factors and anomalous-dispersion corrections for non-H atoms were taken from *International Tables for X-ray Crystallography* (1974); H from Stewart, Davidson & Simpson (1965). All atomic positional parameters were refined. Non-H atoms were refined anisotropically; H atoms isotropically. The H atoms were located in an electron density difference map as peaks of 0.60-0.94 e Å⁻³. Atom labeling, bond lengths and bond angles are shown in Fig. 1. Fig. 2 illustrates the molecular packing and

© 1988 International Union of Crystallography

^{*} Current address: Nucleic Acid Research Institute, 3300 Hyland Avenue, Costa Mesa, CA 92626, USA.